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Abstract

Modified Rouchon and Rouchon-like algorithms were used to solve multicomponent equilibrium-dispersive chromato-
graphic models as well as a more general lumped pore diffusion model. The modified algorithms enable remarkable
reduction of computation time and avoid computation errors that result from the original Rouchon approach for some cases
of multicomponent chromatography. A comparison is given between the general chromatographic model, the lumped pore

diffusion model and the equilibrium-dispersive model.
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1. Introduction

Several computational procedures are available for
the calculation of the band profiles in preparative
chromatography. Some of them have been developed
by using the orthogonal collocation on finite ele-
ments (OCFE) method to solve simple [1] as well as
more general [2] models of sorption dynamics in
chromatographic columns. The OCFE method is
regarded as one of the most accurate [1], but requires
long computational times, even when it is used in a
version of orthogonal collocation on moving finite
elements [3].

Application of different finite difference methods
for solving chromatography models was examined
by Rouchon et al. [4], Czok and Guiochon [5,6], Ma
and Guiochon [1] and was summarized by Guiochon
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et al. [7]. One of the moure interesting is the forward—
backward calculation scheme (Eq. 2) proposed by
Rouchon for solving the equilibrium-dispersive (ED
model) chromatography column model (Eq. 1). The
Rouchon algorithm gives less accurate solutions in
comparison with OCFE, but this disadvantage is
compensated for by considerably lower computation
time [1].

oc; ol; dc; 8¢, P l-¢ .
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fori =1,..,.NC

In the finite difference scheme (Eq. 2) the approxi-
mation of the apparent dispersion term of Eq. (1) is
not given. The band profile broadening caused by
dispersion was simulated indirectly due to the effect
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of numerical diffusion by appropriate choice of the
time and spatial increments — see Egs. (3.4).

2D,
Az=— (3)
Az
Ar=—"(1+ka 4)

where a =2 was recommended [7].

Successive numerical solutions of the finite differ-
ence (Eq. 2) for increasing values of the space and
then the time increments allow the calculation of
concentration at each point of the grid, by using the
initial and boundary conditions.

It should be noted that the Rouchon algorithm is
accurate only in linear chromatography and for a
single component. In nonlinear cases the Rouchon
method does not give a correct solution because the
retention factor k' is a function of component
concentration and therefore is changing in time and
space. The next source of error appears in multi-
component chromatography even for a linear iso-
therm. It should be noted that in implementation of
the Rouchon algorithm for multicomponent chroma-
tography, appropriate interval sizes that will produce
the desired band broadening were chosen for one
component of the mixture. For other peaks with
different retention factors, the time increment re-
sulting from this choice had to be accepted. Such a
method of time increment establishment can give
unacceptable results for the calculation for a mixture
of components with remarkably different values of
the retention factor &'.

In spite of the mentioned drawback, the Rouchon
algorithm was successfully used for modeling non-
linear two-component chromatography systems when
the ratio of retention factors k,/k| was relatively
small [1,6,7].

The aim of this work is to present accuracy and
efficiency of calculation with a modified Rouchon
algorithm for the ED model and a modified
Rouchon-like finite difference scheme proposed in
Refs. [3.,8] for the lumped pore diffusion model
(POR model).

The accuracy of calculation with the different
schemes will be tested by comparison with the
solution obtained using the orthogonal collocation on
finite elements (OCFE) technique.

2. Modification of the Rouchon algorithm for
equilibrium-dispersive chromatographic model

As noted above, in the original Rouchon scheme
applied for modeling multicomponent nonlinear
chromatography there are two sources of error:

1. Numerical diffusion does not exactly approximate
the apparent dispersion because the retention
factor k" in Eq. (4) is a function of component
concentration and thus is changing in time and
space.

2. The time increment calculated from Eq. (4) for a
chosen component from the chromatographic
mixture is not adequate for the other components.

The first error can be eliminated by appropriate
control of numerical diffusion [5] but is very CPU
time consuming — the time of computation is about 5
times longer in comparison with the exact OCFE
method and about 200 times longer in comparison
with the original Rouchon method [1].

It seems that it will be very difficult to find a
numerical method which will be as precise as OCFE
and as fast as the Rouchon method and that is why
we concentrate on the elimination of the second
source error in the Rouchon algorithm.

To eliminate the second source of error in im-
plementation of the Rouchon algorithm, integration
of Eq. (1) for a multicomponent mixture was per-
formed on the individual time grid for each com-
ponent. The difference for each grid time increment
was calculated from an equation analogous to [4]:

A —*4Z—I+k' 5
t,'—w( ,‘)a ()

where k| is a retention factor for component i and Az
is calculated from Eq. (3).

The Rouchon scheme for each component can be
rewritten as:
C1+I _Cl Fl+l _]-ut Cl-+l_ {‘I

fa—1 iz—1 iz— | iz—1 i,z ihz—1

+F +w Az

Ar, Ar,
=0 (6)

i i

where i=1,..,NC. It should be noted that all advan-
tages of the original Rouchon algorithm are pre-
served.
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In the following paragraphs, several comparisons
of solutions of Eq. (1) coupled with the Langmuir
isotherm

'K,
[=—"¢ — )

1 +2Kic,-
J=1

obtained by using the modified Rouchon algorithm
and the OCFE algorithm are presented. It should be
noted that for calculation of the adsorbent surface
concentration [}, the value of concentration c; in the
fluid phase must be known. In the modified Rouchon
algorithm, the concentration with index i is
computed for different nodal points of the time grid
than concentrations of other components with index
“j”. To calculate surface concentration I, the
appropriate values of concentration ¢; in the de-
nominator of Eq. (7) were obtained using linear
interpolation.

In linear chromatography the retention factor £, in
Eq. (5) is equal to the term k; =FKJI". In the
nonlinear case the retention factor is also approxi-
mated by the same equation.

To accelerate computation by using modified
Rouchon method, the idea of eliminating from the
calculation all points with a concentration below a
certain threshold [9] was applied. In this work nodal
points with a concentration less than c, - 10™° were
eliminated from the computation. The error in mass
balance was always less than about 0.0001%.

The solution with the OCFE method was per-
formed assuming Danckwerts boundary conditions —
Egs. (15,16) with D, in place of €,D, . In the case of
the Rouchon scheme, boundary conditions were
assumed typical for HPLC:

c(t,0)=c,
¢, =1c, forr€[0,1,)]; Oforr> 1} (8)
de(t, 2)

dZ =L - 0 (9)

The OCFE method applied here is the same as that
described in Refs. [1-3,7] but obtained after the
discretization set of ordinal differential equations
was solved using the Adams—Moulton procedure
implemented in the LSODA solver [10] using a
relative and absolute error equal to 10~ °. The

LSODA procedure automatically chooses the appro-
priate time increment to fulfil assumed error con-
ditions. In each calculation the number of internal
collocation points in subdomains (elements) was
equal to 3. The number of subdomains was chosen in
such way as to have no visible oscillation in band
profile simulation.

In each calculation the following values of the
parameters were assumed: F=0.25, w=0.0015,
D,=375-10"°, I'"=4-10"". Column length was
L=0.15 except for Fig. 8 where L=0.25. The values
of equilibrium constants, inlet concentrations and
pulse time are given below. The number of theoret-
ical plates, calculated as N=L/Ax=Lw/2D,, was
3000 except for Fig. 8 where N=>5000.

All calculation were performed on a PC-Peatium
60 MHz computer. Programs were written in Micro
Way NDP Fortran.

In the original Rouchon method the recommended
a parameter was 2 — see Ref. [7] chapter X. Such a
choice of a describes chromatographic bands for
large overload conditions and relatively strongly
adsorbed components well. For weaker adsorbed
components and small amounts of sample, calcula-
tion with ¢ =2 can give unacceptable results.

As an example in Figs. 1-4 a comparison of the
ED model solution with the OCFE method (solid
line) and the original Rouchon method (dashed and
dotted lines) for different @, pulse times f, and
equilibrium constants K=0.5 or K=10 is given. A
solution for weakly adsorbent substances obtained by

130 140 150 160
Time [s]

Fig. 1. Comparison of results of calculation for a one-component
mixture [K=0.5, ¢,=1.5, 1, =10 (weakly adsorbed substance and
overload conditions)} obtained by using the OCFE method (solid
line), and the original Rouchon method for ¢ =1 (dotted line),
a=1.5 (dashed line) and ¢ =2 (dash-dotted line). NS =300.
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Fig. 2. Same as in Fig. 1 but ¢,=0.2, 7, =1.
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Fig. 3. Same as in Fig. | but K=10, NS=650.

using the finite difference method for a=2 gives a
marked error. It should be noted that weak ad-
sorption conditions are not a marginal problem, since
Felinger and Guoichon [9] showed that in such cases
the column productivity can be maximal. On the
basis of analysis of the data given in Figs. 1-4 we
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Fig. 4. Same as Fig. 1 but c,:O.2, K=10,: =1.
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Fig. 5. Comparison of results of calculations for a two-component
mixture which were obtained by using the OCFE method (solid
line), and the modified Rouchon method for a=1.5 (dotted line).
Sample composition was 1.5:0.5. NS=350.

decided to apply a=1.5 in the following calculation
for modified and original versions of the Rouchon
algorithm.

In Figs. 5-7 a comparison between the OCFE
solutions, the original Rouchon and the modified
Rouchon solutions is given for K, =4, K, =5, pulse
time 1,= 10 and sample compositions: 1.5:0.5, 1:1,
0.5:1.5. These problems were analyzed in Refs.
(1,6,7]. In Fig. 8 the simulations for 1= 100, K, =1,
K,=2, ¢;,=1, ¢,=1 are presented. For small
differences between equilibrium constants K, and
K,, both difference methods give solutions that are
indistinguishable on the applied figure scale. Times
of computations, number of theoretical plates and
number of subdomains in the OCFE method are
presented in Table 1. With an increase of the band
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Fig. 6. Same as in Fig. 5 but the sample composition was 1.0:1.0.
NS=550.
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Fig. 7. Same as in Fig. 5 but the sample composition was 0.5:1.5.
NS =550.
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Fig. 8. Comparison of the OCFE (solid line) and modified
Rouchon (dotted line) methods for very strong overload con-
ditions. NS =800.

concentration gradient, the number of subdomains
must be enlarged to avoid unrealistic oscillation of
solutions. This involves a marked increase in the
ratio of the computation times for the OCFE method
and the finite difference method when the concen-
tration gradient becomes steeper — see Figs. 5 and 8.

o
w
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Fig. 9. Comparison of the OCFE and original Rouchon methods
for a four-component mixture. NS=400.

The ratio of CPU times of old to new finite
difference methods is ca. 1.8 for N=3000 and ca. 3
for N=16 000.

In the case where the concentration of one com-
ponent is much larger than that of a second one and
peaks overlap, the modified Rouchon method does
not improve the solution compared to that of the
original method.

The original Rouchon method should not be
applied if differences between equilibrium constants
(generally between k') are marked. In Fig. 9 the
results of simulations for a four component mixture:
K =1, K,=15, K;=3, K,=5, ¢,,=05, ¢,,=10
¢;3=1.5 ¢, =0.5 and 1 ;=10 obtained by using the
OCFE method and the original Rouchon method are
presented. In Fig. 10 the same comparison is given
for the OCFE and the modified Rouchon method. As
can be seen in this case, the calculation using the
original Rouchon method gives some errors especial-
ly for the first and second components. The error
value depends on the required purity of components.

Table 1
Comparison of CPU times for simulation given in Figs. 5-8
Fig. N NS Time (min)
Orthogonal collocation Original Rouchon method Modified Rouchon method
Fig. 5 3000 350 1149 3.1 1.7
Fig. 6 3000 550 175.6 31 1.7
Fig. 7 3000 550 179.2 3.1 1.7
Fig. 8 5000 800 440.2 12.5 5.9
Similar to Figs. 5-7 16 000 - - 120 43
Similar to Fig. 8 16 000 - - 185.1 58.7
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Fig. 10. Comparison of the OCFE (solid line) and modified
Rouchon (dotted line) methods for a four-component mixture.

If, for example, it is stipulated that component two is
recovered with impurities of component one and
three of less than 107’ kmol/m’, then cut times
should be about 171 s and 207 s with the OCFE or
the modified Rouchon method. The original Rouchon
method gives cut times equal to 181 s and 206 s.
When the stipulated concentrations of component
one and three are less than 107° kmol/m3, cut times
should be about 179 s and 207 s for the OCFE or the
modified Rouchon method and 197 s and 204 s for
the original Rouchon method. Evaluating the cut
points in the original Rouchon method, the first time
about 30% of pure component two would be lost and
the second time about 70%. Times of calculation
were equal: the modified Rouchon algorithm — 3.8
min; original algorithm — 5.7 min; and the OCFE
method — 2187.5 min.

Differences between band profiles and CPU times
for the finite difference methods under discussion are
more marked the smaller the pulse time and the
greater the number of theoretical plates. In Fig. 11
the comparison of calculations for N=2000, K, =
06, K,=1, K;=2, K,=5, 1, =1, ¢;;=cp=¢p3=
¢, =0.5 for all numerical methods discussed in this
work is presented. The solution obtained with the
modified Rouchon method is nearly identical with
that of the OCFE method while that obtained with
the original Rouchon method is unacceptable.

To emphasize the gain in CPU time when calcula-
tions are not performed on nodal points at which
concentrations are smaller than ¢, 107°, the compu-
tations were carried out for a number of theoretical
plates equal to 2000, 4000, 8000 and 16 000 and

0,08

o
o
&

——

g

Concertration [-]

o
o
N
T

0,00 — i
0 100 200 300 400 500 600 700

Time [s]

Fig. 11. Comparison of solutions obtained by the OCFE (solid
line), modified (dotted line) and original (dashed line) Rouchon
methods for a four-component mixture. NS = [50.

CPU times were compared with the case when
calculations were performed on every nodal point.
From the results given in Table 2 it follows that the
time of computation can be even 50 times shorter
when calculations are performed only in nodal points
occupied by peaks in comparison to calculations
carried out for every nodal point. The time of
computation with the modified Rouchon algorithm
with elimination of nodal points with concentrations
less than ¢, 107° from calculation is proportional to
N*” where B was equal to 1.84 in the example given.

3. Modification of the Rouchon-like algorithm
for the lumped pore diffusion model

The ED model can be used when mass transfer
resistances are almost negligible. However in the
separation of substances such as proteins, mass
transfer resistances should be taken into account and
in this case a general chromatographic model (GCh
model) is recommended [11]. Calculations using the
GCh model are very time-consuming and several
groups of researchers have proposed simplifications
of the GCh model in which, however, all mass
transfer resistances were taken into account. The
interesting proposition of such a simplified model
called the lumped pore diffusion model (POR
model) was successfully used to describe the sepa-
ration of an alkylaromatic C-9 fraction or chloro-
toluene isomer mixture on Y zeolites [12,13]. Un-
fortunately, conditions under which the GCh model
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iia:; 2of simulation for a mixture of four components for different numbers of theoretical plates

N

2000 4000 8000 16 000
CPU time (s)—case (a) 42 444 1605
CPU time (s)—case (b) 1154 4934 21221 87 300

Calculations were carried out using the modified Rouchon method in two cases: (a) calculation was performed only for nodal points at which
concentrations were greater than ¢t 107% (b) calculations were performed for every nodal point.

could be substituted by the POR model are not yet
given. In the following section, such conditions will
be formulated and application of a modified
Rouchon-like algorithm constructed for the POR
model will be discussed.

3.1. Comparison of the GCh model and the POR
model

If the following conditions can be assumed:

1. the multicomponent fixed-bed process is iso-
thermal,

2. the bed is packed with porous adsorbents which
are spherical and uniform in size,

3. the concentration gradient in the radial direction
of the bed is negligible,

4. local equilibrium exists for each component be-
tween the pore surface and the stagnant fluid
phase in macropores,

5. the dispersion and mass transfer coefficients are
constant,

then the following GCh model can be formulated
[2,14]:

— material balance of the i-th component in the
mobile fluid phase

o6c; 6 B
€ 51 + a—z(uc[) =

5

b d°c,
e —
e™L 6Z2

(1 = &)k 0 ap(c,- - cp,.(r = Rp))
(10)

— material balance of the i-th component in the
solid phase:

dc,, 8, 1 5( zﬁcp,») |
% 5t H=£)p, St _D”"rz sr\" “5r (D

By summing Eq. (10) for all components, each
divided by the molar density of the component, g,
and assuming the additivity of volumes for the fluid
mixture, the following equation for the fluid velocity
can be obtained:

Su NC
5=~ (e Xk a e, = e, = RO,
(12)
— initial conditions for t=0
c(0,2)=¢} for 0<z<L (13)

0.1,y = cp(r,2)

fi 0<z<L;0<r<R
E(O, r :) — F;)(r, Z) } or e r p

(14)
boundary conditions for Eq. (10)
fort>0;,z=0
, dc,(t,0)
uc, —ult, 0)e,(t.0)= —&.D, B
(‘; ={c¢, forr€[0,1,]; Oforr>z}
u(t, 0)=u, (15)
fort>0;z=L
&'—g;jl =0 (16)
boundary conditions for Eq. (11)
for 1>0; r=R,
dc,{t, r)
et o ke ile; — ¢, 6, 1) (17)
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for t>0; r=0

5c‘p ()

5 (18)

For calculation of the mass transfer coefficient and
the dispersion coefficient in the case of liquid
chromatography, the following correlations are rec-
ommended [2,7,15]:

- transport coefficient in the external fluid film &,
[16]

1.09
Sh= —S-Re0‘33Sc°‘33; 0.0015 <Re =55 (19)

e

— Peclet number [17]

d
aeTpPe =0.2+0.011Re"*® (20)
The material balance of the i-th component in the
mobile fluid phase and solid phase in the POR model
can be expressed as:
2

—&2' — (1= gc)k,.ap(ci - 5pi)

8¢, &
v + 3—Z(uci) =¢gD,
1)

— the material balance of the i-th component in the
solid phase:

55?!‘ 61—: _
LA +(1— ep)pg?[ =ka,c,—¢,) (22)
Su NC i
5= —ee)gk,. a,e,—¢,)lp, (23)

where ¢ and I” denote average concentration.
The overall mass transfer coefficient k is calcu-
lated from the equation:

AT
k—(k +k_) (24)

ext int

where k.. and k;, indicate external and internal
(macropore) mass transfer coefficients respectively.
The external mass transfer coefficient is calculated
from (Eq. 19) and the internal mass transfer coeffi-
cient from Eq. (25)

IODcff Spo

kinl - d ’ Deff - 2]

(25)

where D_ is the molecular diffusion coefficient,

Qe -

i

Q@ -

Qot |-

Q@

Time [s]

Fig. 12. Comparison of solutions obtained from calculations using
the GCh model - solid line; and the POR model — dotted line.
The number of the subdomain was 20 for d,=5- 107 and 40 for
d =3-107".

P

while @ is the tortuosity factor. The dispersion
coefficient is calculated from Eq. (20), initial and
boundary condition are analogous to those in the
GCh model.

Detailed discussion of the assumptions following
from the GCh model to the POR model are presented
in Ref. [12].

For comparison of the GCh and POR models, both
models were solved using the OCEF method. The
variation of fluid velocity was ignored. The number
of subdomains (elements) was equal to one for the
adsorbent pellet and for the columns it is given in the
figure captions. The number of internal collocation
points in the subdomains was equal to 4 or 3 for the
pellet and 3 for the column. The set of ordinal
differential equations obtained after discretization of
the POR or GCh models was solved using the
LSODA procedure [10]. Relative and absolute errors
were equal to 10~ °. All calculations were performed
on a PC Pentium 60 MHz computer.

The comparison of both models is given in Fig. 12
and in Table 3 for adsorbent pellets of diameter 50
pm and 30 wm. Physico-chemical model parameters
were calculated as for the hexane (eluent), benzene

Table 3
Comparison of CPU times for data given in Fig. 12

d, Pe St Bi Time of computation (min)
(pm)

POR model GCh model
30 1236 4556  40.8 11.6 300
50 1236 1941 48.3 1.22 47
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(sample) mixture. Other parameters were: L=0.1,
u=0.001, =033, £=052, r,=1960, r=
0.002, K=4, r=3, 1 =35, ¢;=0.6. The dimensionless
Peclet, Stanton and Biot numbers, characterizing
dispersion and mass transfer resistances are given in
Table 3.

As can be seen, for given data and pellet diameters
less than about 30 pm both models are fully
equivalent. For d,=50 pum the differences are still
negligible. On the other hand, time of computation
using the GCh model was about 30 times longer.

The Peclet number was Pe = 1236 in these calcula-
tions. For Pe =100 or Pe= 10 000 with other param-
eters unchanged, differences between the solutions
using the POR and the GCh models were the saine as
in Fig. 12. Changes in the equilibrium constant from
0.2 (very weak adsorbed substance) to 10 (strong
adsorbed substance) did not influence the accuracy of
computation with the POR model either. Of course,
the comparison given in Fig. 12 is not general but we
want to illustrate it for typical LC conditions. Much
more convenient and general is the comparison of
models written in the dimensionless form. After
introducing the following dimensionless variables:

Z R r tu; C; Cpi
X L Rp L“/‘e Yi o, Y pi o,
Po— ul kewaple. Bi— kR, _u
D&’ Ug ’ D’ ug’
_o o _pdi _plT
G g T T,
the GCh model can be rewritten as follows:
LTSN
ST ax(é:y,') =
L 62‘)/'{ 1 B EC R _ 1
Pe 5)62 - e, St,'()i —yp.‘( =1) (26)
8y pi 6q, St; 1 & ( , 6y pi)
& or T8 5 = 38 w2 SR \R 8
(27)
o¢ 1- 6
BT T a 2SO Y R= 1D, (28)
— initial conditions for 7=0
y{(0,x)=y! for0<x<1 (29)

yp,-(O, Rv x) = y;((Ry x)

0 }for0<x<1;O<R<1
qj(o’ Ro x) = q‘» (R, x)

(30)
boundary conditions for Eq. (26)

for 7>0; x=0

, 1 6y,(%.0)
Y — €@ Oy(m0)= — o5

vy =y for 7e[0, 1), v, =0 for7>7, (31)
&t 0)=1
forr>0;x=1

6)’1(7" X) B
dx 0

boundary conditions for Eq. (27)

(32)

fortr>0,R=1

8y ,‘(T,R)
SR = Bi(yi —y (T R) (33)

for 7>0; R=0

8v,(7. R)
=9

oR (34)

With the same dimensionless variables the POR
model can be rewritten as:

O 6 .
67’ + 6x(§yi)-

1 8%, l-¢ St

Pe o e 1B ) (33)
8Ypi g, St; B,
&or (T8 5~ T g5 %S GO
8¢ -6 & St }
5T e ZTTESY WY (37)

€ i=1

analogous to initial and boundary conditions for the
GCh model.

To compare the above models, calculations were
executed for Pe= 1000 and different Biot and Stan-
ton numbers. Other parameters needed for solving
dimensionless models were the same as in the
example given in Fig. 12. The Peclet number was not
changed because dispersion is taken into account in
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the same way in both models and, as stated above, it
did not influence the accuracy of computation with
the POR model. An example of a comparison
between these two models is given in Fig. 13.

The differences between the solutions obtained
using both models are negligible with the scale used
in Fig. 13 . However after a scale-up as presented in
the upper right corner of Fig. 13 one can see that for
Bi=3000 the band profiles calculated with the POR
model begin distinctly earlier than with the GCh
model.

The same accuracy of computation using the POR
model was observed for Stanton numbers 10, 1000
and 100 000. Taking this into account we propose to
use the POR model instead of the GCh one if
St/Bi>5.

3.2. Rouchon-like algorithm for the POR model

In Refs. [3,8] a Rouchon-like algorithm for the
POR model is proposed.

Taking the Rouchon idea into account, the finite
difference approximation of Eq. (35) is as follows:

+1 pr+1 +1 T
y;X é:,\' = y:,x*l §x-—l
ytr:r—ll _yl"r.x*l + 1 - €e St,‘
At . 1+Bil5

[+

X (i = ))Ax (38)

Eq. (36) was approximated by the implicit scheme

0pd

003

002

Concentration [-]

0Dt
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Time [-]

Fig. 13. Comparison of solutions obtained by the GCh model and
the POR model for Pe=1000 and Sr=10 000. The Biot number
was (a) Bi=3000; (b) Bi=2000; (c) Bi=500; (d) Bi=1.

=7+ __ ’T+|
pix — Yix
& Frin = Vi) T U= eXq " =gl
St.AT
Bi,
x(1+5 (39)

The Danckwerts boundary condition at the inlet of
the column was replaced by y,(0)=y,. The disper-
sion effect was simulated indirectly as in the original
Rouchon scheme by appropriate choice of spatial and
time increments [3,8].

Ay = 2D, &, .
At = Ax(1 + FKT")*a (41)

where D, was calculated from Eq. (20) and a was
chosen as 2.9 — see Ref. [3].

Simulation of chromatographic and adsorption
processes using this scheme proved to be some
hundred times faster in comparison with OCFE
methods [3,8].

Unfortunately the algorithm (Eqs. 38-41) has the
same two disadvantages as the original Rouchon
scheme discussed for the ED ‘model. In the case of
the POR model we have also concentrated on
eliminating the second source of error in the algo-
rithm (Egs. 38—41) by integrating Eqs. (38,39) for
multicomponent mixtures on the individual time grid
for each component. The time increment difference
for each grid was calculated from an equation
analogous to Eq. (5):

A7, = Ax(1 + FK.I'[)a (42)

with the value of parameter ¢ =2.9 as recommended
in Refs. [3,8].

As in the case of the modified Rouchon method
the points with a concentration below ¢, - 107° were
eliminated from the computation. The error in mass
balance was less than 0.0001%.

In Figs. 14-17 and in Table 4 comparison of the
solutions using the OCFE method, Rouchon-like and
modified Rouchon-like finite difference schemes is
presented. Calculations were performed for Pe=
1000, St/(1+Bi/5)=1000, p =1, £=033, &=
0.52, r,=1960, I *=2-10"". Other parameters are
given in the captions for Figs. 14-17. The time
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Fig. 14. Comparison of the solutions obtained by the OCFE
method (solid line) and the modified Rouchon-like algorithm
(dashed line). K, =4, K,=5, 7,=0.15, y,, =15, y,,=05, NS=
3s.
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Fig. 15. Comparison of the solutions obtained by the OCFE
method (solid line) and the modified Rouchon-like algorithm
(dashed line). K, =1, K,=2, 7,=4, y,, =y, =1.0, NS=60.

Concentration {]
2

0% -

o

Time[]

Fig. 16. Comparison of the solutions obtained by the OCFE
method (solid line) and the modified Rouchon-like algorithm
(dashed fine). K, =1, K,=2, K,=3, K,=4, 7,=0.15, y,, =y, =
Y=y =10, NS=25.

[ o

Concentration [

[+l 4

o ) . . .
8 5 0 k-3 2

Time[]

Fig. 17. Same as in Fig. 16 but the dotted line denotes the solution
obtained by the unmodified Rouchon-like algorithm.

increment for the unmodified Rouchon-like method
was calculated from Eq. (41) for the most strongly
adsorbed component.

For small differences between equilibrium con-
stants (saturation capacity was assumed to be con-
stant for each component) both difference methods
give the same results for concentration overload as
well as mass and concentration overload conditions —
Figs. 14 and 15. The accuracy of the solution even
for a concentration ratio of 3:1 is very good.

In the case of substantial differences between
equilibrium constants, such as in Figs. 16 and 17, the
accuracy of the modified Rouchon-like algorithm can
still be acceptable but not for the unmodified one.
Considerable differences are especially noticable for
the first and second components.

The time of computation using finite difference
methods is even several hundred times shorter in
comparison with the OCFE method. CPU times for
the unmodified Rouchon-like method are up to
several tens percent lower in comparison with those
for the modified method. This is due to the fact that,
in given examples, chromatographic peaks occupied
a large part of the column and the time increment for
the unmodified method is calculated for the most
retained component, which is greater than the time
increment calculated for other components in the
modified method. For more effective column and
less overload conditions, the time of computation
using the modified algorithm is shorter in com-
parison with the unmodified one. As an example
CPU times for Pe=6000, St/(1+ Bi/5)=3000, dif-
ferent pulse times and inlet sample concentrations
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Table 4

Comparison between times of computation for OCFE, Rouchon-like and modified Rouchon-like methods

Fig. CPU time (s)

OCFE method

Rouchon-like method

Modified Rouchon-like method

Fig. 14 3529 12.5 17.5

Fig. 15 18 524 21.2 26.2

Figs. 16 and 17 6940 31.2 38.7

Pe=1000, St/(1+Bi/5)=1000

are given in Table 5. Other parameters are the same 8y, 8q, Sy, 1 8%

as for the simulation presented in Fig. 14. e—+(l—-g)yr=e—=65—> (44)
P g " 81 v AT ¢ dx “Pe §x°

For the same overload conditions as shown in Fig.
14, the modified Rouchon-like method is 1.4 times
faster than the unmodified method. For the smallest
loading factor, the modified algorithm is 4.4 times
faster.

4. Comparison of the ED model and the POR
model

It is well known that the ED model can be
successfully used for simulation of HPLC. In this
section we will give criteria for the applicability of
the ED model for theoretical plate numbers up to
2000.

The ED model can be easily obtained from the
POR model after eliminating the term ka(c,—¢ ;)
from Eq. (21) using Eq. (22). Assuming that mass
transfer resistances are negligible, which is equiva-
lent to condition ¢, =c ,; one can obtain a form of the
ED model similar to that given by Eq. (1)

s b, 8%,
+(1— 6‘,)ps—§t— + ug; = aeDLS—zz (43)

¢,
]

or its dimensionless equivalent:

The ED model coupled with Danckwerts boundary
conditions and the POR model were solved with the
OCFE method for several Peclet, Stanton and Biot
numbers. Other parameters were equal &, =0.33,
£,=0.52, p,=1960, I'"=0.002, K=4, 7,=0.15,
y,=0.6. Constant fluid velocity in the POR model
was assumed.

In Fig. 18 an example of the results of computa-
tion for Pe=500 are presented. In Table 6, CPU
times for both methods are given.

For the chromatographic process carried out under
typical conditions, the Reynolds number is less then
1. From Eq. (20) it follows that Pe=L/d,. Taking
into account data given in Fig. 18 it can be seen that
for St/(1+Bi/5)>=4000 differences between ED
and POR models are negligible. Accuracy of compu-
tation for Pe between 500—4000 and St/(1+ Bi/5)=
4000 or Pe=100 and St/(1-+Bi/5)=2000 is similar
to that presented in Fig. 18 for St/(1+ Bi/5)=4000.
The criteria of applicability of the ED model can be
formulated as follows: for L/d >=500 the POR
model can be replaced by the ED model when the
condition St/(1+Bi/5)>=~4000 is fulfiled. For
lower values of the ratio, L/d,>~100 (Pe=100),
the value of the dimensionless variable St/(1+ Bi/5)

Table 5
Comparison between times of computation for Rouchon-like and modified Rouchon-like methods
Dimensionless Dimensionless inlet CPU time (s)
pulse time 7, concentration
Rouchon-like method Modified Rouchon-like method
0.15 yu=15y,=05 530 380
0.015 ya=15y,=05 470 212
0.015 ¥, =01 y,=0.1 420 95

Pe=6000, St/(1+ Bi/5)=3000.
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Table 6
Comparison of CPU times for POR and ED models
Pe St/(1+Bi/5) Number of theoretical plates Time of computation (s)
N=Pel2
POR model ED model

100 2000 50 42 2

500 4000 250 67 5

1000 4000 500 434 16
4000 4000 2000 22 825 317

should be greater then about 2000. Peclet numbers
lower than 100 are rather uncommon in the chro-
matographic process.

5. Conclusion

In the present work the modified implementation
of Rouchon and Rouchon-like algorithms was tested
for ED and POR models. By introducing an in-
dividual time grid for each component it was pos-
sible to simulate the chromatographic process for
mixtures of components having significantly differ-
ent retention factors. Elimination of nodal points
with a concentration less than a certain threshold
from computation resulted in an essential reduction
in CPU time, especially for very efficient column
and low overload conditions. Comparing a Rouchon
method, modified by us, to the original one and to a
Rouchon method modified by Felinger and Guoichon
[9], the following conclusions can be formulated:

003

Concentration [-]
o
=3

)
2
v

10 12 14 16 18 0 2
Time [-]

Fig. 18. Comparison between ED (solid line) and POR (dotted
lines) model solutions for Pe=500. (a) St/(1+ Bi/5)=4000; (b)
St/(1+Bi/5)=2000; (c) St/(1+Bi/5)=3500.

(1) Our algorithm is stable if condition (Eq. 5) is
fulfilled. Original and Felinger modified algorithms
are generally stable only when the time increment is
calculated for the most retained component — for
example these algorithms would be unstable when
the increment time is calculated for components 1, 2
from Fig. 9 or components 1, 2, 3 from Fig. 11.

(2) Due to introducion of an individual time grid
for each component, it was possible to additionally
reduce the time of computation in comparison with
the Felinger rapid algorithm. The maximum gain in
CPU time in the Felinger modification over the
original Rouchon scheme was about 2.5. Using our
numerical scheme, computation times can be reduced
several dozen times.

(3) Accuracy of computation is always the same
for the original Rouchon method and the Felinger
modified method. For small values of separation
factor, our approach gives the same results as the
Rouchon scheme. The improvement of accuracy of
calculation over the Rouchon method using our
proposed method can not be strictly evaluated. It
depends on the values of the equilibrium constants of
components and on the overload conditions. The
improvement is larger for greater values of the
separation factor and lower overload conditions — in
Fig. 11 the solution for the ED model with the
original Rouchon algorithm marked with dashed
lines does not match entirely to the solution obtained
with the modified scheme and the OCFE scheme for
the first two components. The differences between
these two algorithms become smaller and smaller
with increasing concentration overload conditions.
However it is difficult to define exactly when the
accuracy of both methods is practically the same. It
depends on the purity requirement for the component
under consideration and on its retention factor.

Similar conclusions can be formulated while com-
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paring the Rouchon-like method [3,8] and the modi-
fied one.

Finite difference methods based on the Rouchon
proposition are not generally exact but their advan-
tage over the robust and accurate OCFE method is
that of a very small time of computation. In par-
ticular, the CPU time needed for solving the POR
model with the finite difference method can be
several hundred times shorter in comparison with the
OCFE method. The finite difference algorithms
discussed here can be very handy for fast, coarse
optimizing of conditions with minimum production
cost in preparative or production scale chromatog-
raphy. The performance of such calculations is now
possible on personal computers.

The other aim of the present work was to establish
conditions for applicability of the GCh, POR and ED
models which can be formulated as follows:

1. For Pe>100 the POR model can be used instead
of the GCh model if St/Bi>5.

2. For Pe>100 the ED model can be used instead of
the POR model if St/(1+ Bi/5)>2000.

3. For Pe>500 the ED model can be used instead of
POR model if St/(1+ Bi/5)>4000.

6. List of symbols

a parameter in Egs. (4,5,41)
a, external surface of adsorbent pellet (m*/
m3)
. k(’Xf 4 .
Bi D =Biot number
et . . . 3
¢ concentration in fluid phase (kmol/m™)
Cpil) concentration or average concentration in
macropore (kmol/ m’)
d, equivalent particle diameter (m)
D, apparent dispersion coefficient (m*/s)
D eddy diffusion coefficient (m>/s)
D, molecular diffusion coefficient (m*/s)
D, effective diffusion coefficient (m®/s) —
Eq. (25)
I—¢
F PR
k overall mass transport coefficient (m/s)
k.., external mass transport coefficient (m/s)
ki internal mass transport coefficient (m/s)

K equilibrium constant (m’/kmol)
k' retention factor
L column length (m)
N number of theoretical plates
NC number of component
NS number of subdomains (elements) in the
OCFE method
ul
Pe — = Peclet number
D L€e
r radial coordinate
R dimensionless radial coordinate
R, equivalent particle radius
Re %’dP=Reynolds number
q, q dimensionless or average dimensionless
adsorbed phase concentration
Sc = Schmidt number
pD,,
kext id
Sh D =Sherwood number
m
k,.a,Le,
St T=Stanton number
t time (s)
t, time during the constant concentration c,
is fed into column (s)
U superficial velocity (m/s)
w interstitial velocity (m/s)
X dimensionless axial coordinate
y dimensionless concentration in fluid phase
Yoo ¥p dimensionless concentration or average

dimensionless concentration in macropore
axial coordinate (m)

IS

6.1. Greek letters

At time increment

Ax dimensionless space increment

Az space increment

A7 dimensionless time increment

r.r adsorbed or average adsorbed phase con-
centration (kmol/kg)

r- adsorbent loading capacity (kmol/kg)

¢ tortuosity factor

&, &,, & external, internal and total void fractions

6 =
Pi

7 fluid viscosity (kg/ms)
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P fluid molar density (kmol/m*)

P, solid mass density (kg/ m3)

T dimensionless time

7, dimensionless time during the constant
concentration ¢, is fed into column
el

o, —_—

P,

¢ dimensionless fluid volumetric velocity u/

Uy

6.2. Subscripts

) component index i=1,.,NC
r reference conditions
f inlet value

6.3. Superscript

0 initial value
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